Python Functions Basics


Functions Overview

  1. value_counts()
  2. sort_values()
  3. groupby()
  4. agg()
  5. pivot_table()
  6. set_index()
  7. loc[]
  8. sort_index()

Detailed Breakdown

1. value_counts()

df['column_name'].value_counts(normalize=True, sort=True)

Key points:

Common mistakes:

2. sort_values()

df.sort_values(by='column_name', ascending=False)

Key points:

Common mistakes:

3. groupby()

df.groupby('column_name')['value_column'].operation()

Key points:

Common mistakes:

4. agg()

df.groupby('column_name').agg({'col1': 'mean', 'col2': 'sum'})

Key points:

Common mistakes:

5. pivot_table()

pd.pivot_table(df, values='value_col', index='index_col', columns='column_col', aggfunc='mean', fill_value=0)

Key points:

Common mistakes:

6. set_index()

df.set_index(['col1', 'col2'])

Key points:

Common mistakes:

7. loc[]

df.loc[row_indexer, column_indexer]

Key points:

Common mistakes:

8. sort_index()

df.sort_index(level=['col1', 'col2'], ascending=[True, False])

Key points:

Common mistakes:

Remember, practice makes perfect! Keep working with these functions, and soon they'll become second nature. Happy coding!